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Abstract

| ¥We consider a class of iterative algorithms for solving systems of
linear equations where the coefficient matrix is nonsymmetric with
positive-definite symmetric part. The algorithms are modelled after the
conjugate gradient method, and are well-suited for large sparse systems.
They do not make use of any associated symmetric problems. Convergence

results and error bounds are presented.
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1. Introduction

The conjugate gradient method (CG), first described by Hestenes and
Stiefel [8], is widely used for approximating the solutions of large sparse
systems of linear equations

Ax=1f
where A is an N x N, real, symmetric, positive-definite matrix [1, 3, 5§,
12]. CG can be viewed as a direct method that, in the abgence of round-off
error, gives the exact solution in at most N steps; or as an iterative
procedure that gives a good approximation to the solution in far fewer
stops (see [13]1). A feature of the method that makes it particularly
suitable for large sparse systems is that all references to A are in the
form of a matrix-vector product Av, so that the storage requirements are
usually lower than for direct methods. Another attractive feature is that,
unlike most iterative methods, CG does not require any estimation of
parameters. In this paper, we discuss a class of conjugate—gradient-like
descent methods that can be used to solve nonsymmetric systems of linear
equations, Nuomerical eoxperiments with these methods are described in (6,

71.

A common technique [8] for solving nonsymmetric problems is to apply
the conjugate gradient method to the normal equations
ATA = ATe ’
in which the coefficient matrix is symmetric and positive-definite. On the

i'th iteration, CG computes an approximate solution that is in some sense

optimal in a Krylov subspace of the form {v.ATAv.....(ATA)i_lv]. This

TA tends to make the convergence of CG slow (see [1], [3]).

dependence on A
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Recently, Concus and Golub [4] and Widlund [18] devised a genmeralized
conjugate gradiemt algorithm (GCG) for nonsymmetric systems in which the
coefficient matrix has positive-definite symmetric part. Like the
conjugate gradient method, GCG gives the exact solution in at most N
iterations., However, on each iteratiom it requires the solution of an
suxiliary system of equations in which the coefficient matrix is the
symmetric part of A, Also, if the nonsymmetric part is relatively 1large,

then convergence may be slow.

The methods we present depend on a Krylov sequence based on A rather
than ATA, and they do not require the solution of any auxilisry systems.
They do require that the symmetric part of A be positive-definite. In
Section 2, we present four variants that differ in their work and storage
requirements., In Sections 3 and 4, we present convergence results and
error bounds for each of the four variants. In Section 5, we discuss

several alternative formulations.

Notstion
A+AT
The symmetric part of the coefficient matrix A is given by XN := 5

T
and the skew-symmetric part by R := - é%é;. Thus A= M - R, The Jordan

canonical form of A is denoted by J := 1) 1,

For any square matrix X, let Apin(X) denote the eigenvalue of X of
smsllest absolute value, and let A__ (X) denote the eigenvalue of largest
absolute value., The spectral radius Ix_‘x(x)l of X is denoted by p(X).
The set of eigenvalues of X, also called the spectrum of X, is denoted by
a(X). If X is nonsingular, them the condition number of X, K(X), is

detined as Ixll, 1x7211,.
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Finally, given a set of vectors {po.....pkl. let <po.....pk) denote

the space spanned by {po.....pk}.

2. Descent Methods for Nopsymmetric Svstems

In this section, we presont a class of descent methods for solving the
system of linmear equations
(2.1) Ax=f
where A is a nonsymmetric matrix of order N with positive—definite
symmetric part. We consider four variants, all of which have the following

general form:

(2.22) Choose x -
(2.20) Compute T = £ - Axo .
(2.2¢) Set Pg =% -

FOR i = 0 STEP 1 UNTIL Convergence DO

(ri'Api)
(2.24) s, = TK;;TK;;?
(2.2¢) Ti4q =X Y ap,
(2.21) Tie1 =% " '1"1
(2.2g) Compute p,., -

The choice of s, in (2.24) sinimizes || ||2 = ||f-A(xi+api)||2 as a

Ti+1
function of a, so that the Euclidean norm of the residual decreases at each
step. The variants differ in the technique used to compute the new

direction veotor Pie1*

N
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)
A good choice for Pin1 is one that results in a significant decrease
in the norm of the residual ||ri+1||2 but does not require a large amouant
of work to compute. When A is symmetric and positive-definite, such a
vector can be computed by the simple recurrence relation
(2.33) Pis1 = Ti4p T O4P;
where
(2.3b) b, = - -ﬂ——-“r“l'ffil
k.
The method defined by (2.2) and (2.3) is equivalent to a variant of CG
known as the conjugate residual method (CR) [16]. The direction vectors ‘
L
produced are A?Arorthogonal. that is
|

(2.4) (Api,Apj) =0 , for i # 3§ ,
and xi+1 minimizes the functional
E(w) := |1f - awll,

over the affine space x, + (po.....pi).

If A is nonsymmetric and the algorithm defined by (2.2) and (2.3) is
applied to (2.1), then the orthogonality relation (2.4) does not hold in
general., However, a set of ATA—Otthogonal directions can be generated by

using all the previous vectors [lejao to compute p, 4:

i
s (1)
j=0
where

(Ar Ap,)

(1 _ _ D070y
(2.5b) bj -1:5;735;§ ’ J<Lio .

The iterate x generated by (2.2) and (2.5) minimizes E(w) over

i+1
Zy + <Pgsec-sP;> (see Theorem 3.1). We refer to this algorithm as the

gonerslized conjugate residual method (GCR). In the absence of roundoff
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error, GCR gives the exact solution to (2.1) in at most N iterations (see

Corollary 3.2).

The work and storage requirements per iteration of GCR may be
prohibitively high when N is large. Vinsome [17] has proposed a method
called Orthomin that can be viewed as a modification of GCR that is
significantly less expensive per iteration. Instead of making Piv1
A?hrorthogonsl to all the preceding direction vectors {pj];=0' one can make

P;4 Orthogonal to only the last k (2 0) vectors {pj]§=i—k+1:
i
+ > b(i)pj »

(2.85) 2
j=ik+1 3

Piv1 T Tia

with {bgi)]§-i—k+1 defined as in (2.51).] Only k direction vectors need be
saved. We refer to this method as Orthomin(k) (see [19])., Both GCR and
Orthomin(k) for X > 1 are equivalent to the conjugate residual method when {

A is symmetric and positive—definite.

Another alternative is to restart GCR periodically: every k+l

iterations, the curremt iterate is taken as the new starting

¥i(x+1)

;uess.z At most k direction vectors have to be saved, so that the storage

costs are the same as for Orthomin(k). However, the cost per iteratiom is
lower, since in general fewer than k direction vectors are used to compute

Piare We refer to this restarted method as GCR(k).

IThe first k directions [pjl§:5 are computed by (2.5a), as in GCR.

znero J is a counter for the number of restarts. The jth cycle of GCR(k)

J(k+1)
produces the sequence of approximate solutions {xi]i-(j-l)(k+1)+1'

.“-"“'““""-“"“-ﬁihiuﬁuﬂunﬁnun...“_nm _ g N L
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For the special case k = 0, Orthomin(k) and GCR(k) are identical, with
2.7 Pi+1 = Tieg .
This method, which we refer to as the minimum residual method (MR), has
very modest work and storage requirements, and in the symmetric case

rosembles the method of steepest descent (see [10]). Because of its

simplicity, we consider it separately from Orthomin(k) and GCR(k).

In Table I, wo summarize the work and storage costs (excluding storage

for A) of computing x, for each of the methods. The entries in this table

are determined as follows. For GCR, the storage cost includes space for

the vectors xi, T, Ari. PgseserPy_q° and Apo,...,Api_l. The
work/iteration includes two inner—products for 'i-l' two scalar-vector
products for x, and T, i inner—-products for {bgi-l)};:g, i scalar—vector
products for pi, i scalar-vector products to compute Api by
i-1
Ao = Ar, + 3 b;i_l)Apj .
j=0

and one matrix-vector product Ari. The total is thus (3i+4)N + 1 mv. The
entries for Orthomin(k) correspond to the requirements after the itk
iteration, and are the same as those for the kB iteration of GCR. The
work given for GCR(k) is the average over k+1 iterations. The cost of MR

is the same as the cost of Orthomin(0) or GCR(O).3

380vorll other implementations are possible. In Orthomin(k) or GCR(k), it
may be cheaper to compute Ap, by a matrix-vector product for large k. With

a third matrix-vector product, bgi) can be computed as

-(Arhri*l.pj)/(Apj.Apj). and the previous {ApJ} need not be saved.
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1-

| GCR | Orthomin(x) | GCR(k) | m |
| Work/ | (3i+4)N | (3x+4)N | ((3/2)x+4)N | 4N |
|Iterationl + 1 mv | + 1 mv | + 1 mv | +1mv |
+ +— +- + — -t
| Storage | (21+43)N | (2k+3)N |  (2k+3)N | 3N |

Iable I Vork per iteration (mv denotes a matrix-vector
product) and storage requirements.

3. Convergence of GCR and GCR(k)

In this section, we show that GCR gives the exact solution in at most
N iterations and present error bounds for GCR and GCR(k). We first
establish a set of relations among the vectors generated by GCR. (See [8]

for an analogous resnlt for the conjugate gradient method.)

Theorem 3.1. If {xi}, {r;}, and {p;]} are the iterates gencrated by GCR in

solving the linear system (2.1), then the following relations hold:

(3.1a) (Api,Apj) =0 , ifj

(3.10) (ri.Apj) =0 s i H

(3.1¢) (ri,Api) = (r;,Ar))

(3.1d) ('1’A’j) =0 , i>3

(3.1e) (ri,Apj) = (ro.Apj) , i<

(3.10) (Bs+eesPyd = <PpeADgs--rsAlRY> = CEguennnr>
(3.1g) if r, # 0, then #0

(3.1h) X 41 minimizes E(w) = ||f-Aw||2 over the affine space

x, + <’0"'°'pi> .

Proof. The directions (’1} are chosen so that (3.1a) holds.

et e e e D

it amin e
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Relation (3.1b) is proved by induction om i, It is vacuously true for
1 = 0, Assume that it holds for i { t. Then, uvsing (2.2f) and taking the
inner product with Apj,
(3.2) (rt+1,Apj) = (rt,Apj) -8, (Apt.Apj) .
If j < t, then the terms on the right-hand side are zero by the induction
hypothesis and (3.1a). If j = t, then the right—hand side is zero by the

definition of a,. Hence (3.1b) holds for i = t+l1,

For (3.1¢), by premultiplying (2.5a) by A and taking the inner product

with r,,
i

(i-1)
%

Vo

(r,,Ap;) = (r;,Ar)) + (z;.4p;)

§=0
= (rilAri) 2

since all the terms in the sum are zero by (3.1b).

To prove (3.1d), we rewrite (2.5a) as
j-1
(j-1)
bt

rj =p, - 2 P, .

} =0

Premultiplying by A and taking the inner product with T, (i > j),
j-1
7 »(i-1)
(ri'Atj) = (ri:Apj) - 2 bt (fi,Apt)
t=0
=0 ,

by (3.1b).

Relation (3.1e) is proved by induction om i, for i ( j. It is
trivially true whem i = 0, Assume that it holds for i = t < j. Using

(3 02) ’

(rt+1'APj) - (tt'Apj) - ‘t (Apt.Apj)
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= (to.Apj) .

by the induction hypothesis and (3.1a).

Relation (3.1f) is proved by induction on i. The three spaces are
idontical when i = 0. Assume that they are identical for i { t. Then

t
{Pj]j-o Clrgseeesryyy>. But by (2.52),

t

5 plt)
P = r + 2 b P: s
t+1 t+l =0 b

8o that <p,,...,p,, > is & subspace of <rg,...,fyy3>. By (3.1a), the

vectors [pj];:é are linearly independent. Hence, the dimension of

t+l

{fgseeesTyyq? is greater than or equal to t+l, which implies that (’j}j=0

are linearly independent and <po,...,pt+1> = <ro.....rt+1). Similarly, by

(2.21),

t
s L (¢)
P =r —aAp + 2 D P .
t+1 t t Pt j=o 3 j

By the induction hypothesis, T, Apt, and [pj];=0 e <po,Ap0....,At+1P0>. $o

+
that <pj,....pg43> 1is a subspace of (po,Apo....,At lpo). Again, the two

spaces are equal because the {Pj} are linearly independent.

The proof of (3.1g) depends on the fact that the symmetric part M of A
is positive—definite., If T, # 0, then by (3.1¢),
(ri'Api) = (ri.ki) = ("1'""1) >0 »

so that (r, ,Ap,) # O, whence p; # 0.

For the proof of (3.1h), note that

i
!i+1 = xo + 5 Y P .
Thus, EB(x )2 is 8 quadratic functional in a = (a,,...,a )T. Indeed,
i+l 0 i

using (3.1a) to simplify the quadratic term,
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i
2 - 2
B(xy )" = gy - 2 o, ap,llG
j=0
i i
< < 2
= » -2 ,A + A ,A .
(ro ro) jio aj(ro pj) jéo 'j( Py Pj)
Thus, E(w) is minimized over x, + (po.....pi> when
. . tro'Aié) i} (!j’Aié) .
b APj. pj) (Apj. pj)
by (3.1e).
Q.E.D.

Corollary 3,2. GCR gives the exact solution to (2.1) in at most N

{terations.

Proof. If r, = 0 for some i { N1, then Axi = f and the assertion is

proved. If r, # 0 for all i { N1, then P, # 0 for all i { N1 by (3.1g).

N-1 N
By (3.1a), {pi]i=0 are linearly independent, so that (po.....pN_l) =R,
Hence, by (3.1h), Ny minimizes the functional E over RN, i.e., . is the
solution to the system.

Q.E.D,

This result does not give any insight into how close x, is to the

solution of (2.1) for i ( N, VWe now derive an error bound for GCR that
proves that GCR converges as an iterative method. Let Pi denote the set of

roal polynomials 9, of degree less than or equal to i such that qi(O) =1,

Theorem 3.3. If (ri} is the sequence of residuals gemerated by GCR, then

xnin(u)z
3.3 lr Il ¢ min g i, Hepll, < 1 - —

=— ]2 gyl .
q e Pi lm.x(A A)
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Hence, GCR converges. If A has a complete set of eigenvectors, then
(3.4) Hegll, <xem wg Hggll,
where

N, := min nax |qi(l)| .
q ¢ P1 A e o(A)

Moreover, if A is normal, then

(3.5) Ilrill2 LM Ilroll2

Proof. By (3.1f), the residuals (ri} generated by GCR are of the form

£, = qi(A)ro for some q s Pi‘ By (3.1h),

(3.6) ||ri||2 = min ||qi(A)ro||2 .
q; ¢ Pi
The first inequality of (3.3) is an immediate consequence of (3.6). To

prove the second inequality of (3.3), note that for ql(z) =1+aqazs Pl'

min g1, < Na i, < Hgrlly .

q s P,
But
2 ((I+aA)x, (I+aA) x)
”ql(A)”2 = :;; (.3
- (x,Ax) , 2 (Ax,Ax) }
o [1 t2 00 Y TGuo ] . 'ﬁ
MNoreover, ‘

(Ax,Ax) _ (x,ATAz)

T
(x,x) (x,x) L x-ax(A A ’

and, using the positive-definiteness of N,

(z,Ax) _ (x,Mx) '
(x,x) (x,x) 2 llin(l) >o . L

Honce, if a € O,
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2 Ty 2
e (Ml £ 1+ 20, (a + 4, (AN .
T luin(u)
This expression is minimized by a = - G and with this choice of a,
A___(A°A)
max
2
A (M)
i
Hoyaril, ¢ [1 - 22____J/2 |
17 A (AT
nax
which concludes the proof of (3.3).
Recall that the Jordan canonical form of A is given by J = 1, T. To
prove (3.4), we rewrite (3.6) as
~1
||ri||2 - -inp T (N T ro||2
qi 8 i !
-1 l
<hTily, T, min Hey@Il, Hegll, . 1
qi e Pi
Since A has a complete soet of eigenvectors, J is diagonal, so that
min  llq (1], = min mx gl
177N (A)
qi 8 Pi qi e Pi Aso
whence (3.4) follows.
If A is normal, then T can be chosen to be an orthonormal matrix, ;
!
which proves (3.5). i
Q.E.D. i
e
]
Since the symmetric part of A is positive-definite, the spectrum of A i
l1ies in the open right half of the complex plane (see [9]). Thus, the ;7
anslysis of Manteuffel [11] shows that min llqi(A)llz and N, approach
q, ¢ P
i i

zero as i goes to infinity, which also implies that GCR converges.
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Theorem 3.3 can also be used to establish an error bound for GCR(k).

Cozrollary 3.4. If {ril is the sequence of residusls generated by GCR(k),

then
3
(3.7 IEN Y| mia o WL 1isn,
%+1 * Trn
so that
2

A_. ()
(3.8) e dt, < [1 - -2 Y2 gy,

A___(A°A)

max

Hence, GCR(k) oconverges. Moreover, if A has a complete set of

eigenvectors, then

J
(3.9) Hrg ey lly € ®D g 07 Tggll,

and if A is normal, thenm

J
(3.10) Hej ey < 0,07 Tggll,

Proof. Assertions (3.7), (3.9), and (3.10) follow from Theorem 3.3. To

prove (3.8), let 1 = jk + t where 0 ( t ( Xx. Then

2
n(l)__

A
Ne o M, ¢ Jo--ma 12 4. g1,
jE+e' 2 [ N (ATA)] jk 2
nax

by (3.3), and

2
A (M)
1y < [ - a2 g0
A __(A°A)
max

"tjk 2 ’

by (3.7) and the second inequality of (3.3).
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4. Convorgepce of Orthomin

In this section, we present convergence results for Orthomin(k) and an

alternative error bound for GCR and GCR(k). Ve also present an analysis of

Orthomin in the special case when the symmetric part of A is the identity.

The vectors generated by Orthomin(k) satisfy a set of relations

analogous to (3.1):

Theorem 4.1. The iterates {xi], (ri}, and {pi] generated by Orthomin(k)

satisfy the relations:

(4.1a)
(4.1b)
(4.1¢)
(4.14)
(4.1e)
(4.11)

(4.1g)

Corollary 3.4 with k = 0 implies that Orthomin(0) (MR) converges. We
now prove that Orthomin(k) converges for kX > 0, Since the analysis applies
as well to GCR, GCR(k), snd MR, we state the results in terms of all four
methods.

two preliminary results:

Lemms 4.2. The direction vectors {pi] and the residuals (ti} generated by
GCR, Orthomin(k), GCR(k), and MR satisfy

(‘.2)

Recalling that R is the skew-symmetric part of A, we first prove

(Api'APj) = ol j = i-k.ll.ji—l » i 2 k :

- &

(ri’Apj) =0, j=ik-1,...,i-1 , i2k#1 ;
(ri‘Api) = (ri.Ari) H

(ri'Ari-l) =0

(ri'APj) = (rj_k.Apj) » di=3-k,...,571, J 2k ;
if T, # 0, then P; #0

for 1 ) k, X;47 minimizes E(w) over the affine space

xi_k + <pi-k‘....p1> .
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Proof. The direction vectors are given by

7 4(i-1)
Pigri.‘-zbj Pj 14

whore the limits of the sum are defined as in (2.5) for GCR and GCR(k), and

(2.6) for Orthomin(k). Therefore, by the ATA-ortho;onality of the [pi} and

the dofinition of b§ 1)
- . (i-1) < .. (i1),2
(Api.Api) = (Ari,Ari) +2 ) bj (Ari,Apj) + ) (bj ) (Apj.Apj)
_ (e ap)? %
; = (Ar;,Az) - 2 pAp.)
: 37T {
< (Ari.Ari) .
Q.E.D.
Lemms 4.,3. For any real x % 0,
(4.3) :xle)) A'lni.nm)
* Ax,Ax 2 ¢
l-in(ﬁ)l-.x(l) + p(R)
Proof. Letting y =~ Ax,
-1,.-T
A "+A
-1 (y,=—5—1y) -1 .~T
b Ay T2 Y Ty
(Ax,Ax) Y.y (y,y) 2 5053 > .
AT
Thus, it suffices to bound l-in(———5--). Consider the identity
(4.4) S Sl 0 0 20 e S R
which holds for any nonsingular matrices X and Y, provided that X+Y is
nonsingular. With X = 2A and Y = 2A%, (4.4) leads to
AlaT  JTRE S | T, -1 -1
3 = [(2A)7°(4N) “(2A)] ~ = [(M - R") M (N - R)]
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- (M + Iyl |
For any x % 0,

(x, (M + RIWCIR)x) = (x,Mx) + (Rx, N 1Rx) >0

so that M+ RINIR is positive~definite. Therefore 7 s

positive—definite and

(A'1+AfT) - 1
2

T—1
l‘.x(l + RK'R)

T,—1
Tle) - mer [0, (LB RD)
x-l!(n + R N R) :;; [ X,X + ]

(x,x)

—1
(Rx,M "Rx) (Rx,Rx)
Llua) ¢ e 0 BLED (x,3)

-1 T
LA + 4 O07) lir"RIN,

= A0 + a0 .

-1,,-T
A “HA 1
At ) 2
min 2
1-.x(l) + p(R) /llin(u)

Q.E.D.

The following result proves that Orthomin(k) converges and provides

another error bound for GCR, GCR(k), and MR.

Theoren 4.4. If lril is the sequence of residuals genmerated by GCR,

Orthomin(k), GCR(k), or MR, then
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2
x (l)
(4.5a) e dl, < 1--—---— i/2 Hzgll,
¢ 1 - R iy,
and
2
A (M)
(4.5b) e, < 1 - miz 12 Nxgl,
Mg OOA (0 + p(R)

Proof. By (2.20),
; Ilti"'lllg = (ti,ri) - 2.1(1'1.Ap1) + ‘i(Api.APi)

2
(riDApi (rilApi)

J -2

ti 2 - u‘l’i.Api-)- *

Therefore,
llri+lllz (ri.Api) (rinApi)
TENTH T L) Ue i)

_ (riphi) (ri’hi)
(ria ri) rhiphi) ’

i~

by (3.1¢)/(4.1¢c) and (4.2). But

(ripki)
Gy 2 ™ -

and
I (riohi) (finl'i) (rl’ki) N ).-u(l)
: = - T .
: W k) ™ (e aThey CreT) T 4™
;
§ so that
| 2
A, (N)
fle, 1. ¢ [1 - _®in “’ll:u .
ety ¢ [t - 2201 11,
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which proves (4.5a). By (4.3),

rypAry) &, 000, 00 + p(R)2
so that
2
A, (M)
min i/2
ley, 00, < 1 - 1 B LU P

Agin(0AL, 00 + p(R)

which proves (4.5b).

Q.E.D.

In general, the two error bounds given in Theorem 4.4 are not

comparable. They are equnai when M » I and (4.5b) is stronger when R = 0,

A _tAJ=k_. (A)
Yhen R = 0, the constant [ "xx t:;‘ ]1/2 in (4.5b) resembles the
nax
A __(A)-a_. (A)_
constant [h-'x min ]1/2 in the error bound for the steepest descent

-ax(A)+lnin(A)

mothod (see [10]). Thus, we believe that the bounds in Theorem 4.4 are not

strict for k 2 1.

If A=1- R with R skew—symmetric, then Orthomin(l) is equivalent to

GCR, and we can improve the error bounds of Theorem 3.3 and Theorem 4.4.

Theorem 4.3. If A=I - R with R skew-symmetric, then Orthomin(1l) is

equivalent to GCR. The residuals {ri} generated by Orthomin(l) satisfy

ptaa. v{+g(n)’)‘

(4.6) e 11, <2
t2 77 (1 s A2t + p(m)2t

l'to'lz »

for even t.
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Proof. To prove that Orthomin(l) is equivalent to GCR, it suffices to show

that bgi) =0 in (2.5b) for j £ i-1. But the numerator is

(Ari+1,Apj) = (ti+1,Apj) - (Rri+1.Apj) .
By (3.1b),
(ri+1,Apj) = - (ri+1.Apj) =0 .
Hence, by the skew-symmetry of R,
(Ary,;.Ap)) = = (ry,1.0p)) + (£441.RAD)) = = (ryy1.A7P))
But by (2.2f),

1
a

2 _
(ri41.472;) = ]

(ri+1.A(rj—rj+1)) =0 ’

for j € i-1, by (3.14d).

For (4.6), observe that A= I — R is a normal matrix, so that (3.5)

holds. We prove (4.6) by bounding M. . Widlund [18] has shown that
(4.7) M, < [oosh(t log(zigy (1 + AepDNIY
for even t, Let n = 5%‘7(1 + v£+p(k)!). Using

cosh(z) = % (e + e %

(4.7) reduces to

2 nf
N < =2
t at + ¢ nZt +1

from which (4.6) follows.

‘
)
i
i
t
I
'
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5. Other Approaches

In this section, we discuss several methods that are mathematically

equivalent to GCR.

We derived GCR from CR by replacing the short recurrence for direction
vectors (2.3) with (2.5), whick produces a set of A?Arotthogonul vectors
when A is nonsymmetric. Young and Jea [19] preseat an alternative,

Lanczos—1like method for computing A?A—orthogonnl direction vectors:

i
b oo At - (1),
(5.1a) Pis1 Api + jib bj pj ’
where
" (A%p].Ap})
(5.1b) bj = - zxigjxigg— ’ jigi .

If {pi] is the set of direction vectors generated by GCR and p6 = Pgy- then
pi = ¢,p,; for some scalar LA (see [19]). Hence, this procedure canm be used
to compute directions in place of (2.5). The resulting algorithm is
equivalent to GCR, but does mnot require the symmetric part of A to be

positive—definite.

Axelsson {2] takes a somewhat different approach. Let X, Tgs and p,

be as in (2.2). Then one iteration of Axelsson's method is given by:

i
< (1)
(5.22) x =x. 4+ ) &, P
e R e
(5.20) Tiap = £ Axg,
e
(5.24) Piag = Tyap * bp,

h."'"'"‘"'""‘""""‘"“--‘-------u------— . | N
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(i),1
where the scalars {lj )j-o are computed so that ||ri+1||2 is minimized.

This requires the solution of s symmetric system of equations of order i+l
B ‘(i) =g,

where Bct - (Ap‘.Apt) and g = (r;,Ap,). Thus, the solution update is more

complicated thsa in GCR, bdut the computation of & set of linearly

independent direction vectors is simpler. Although the direction vectors

are not all AA-orthogomal, (5.2d) and the choice of {agi—l)]}go

force

||r1||2 = min ||qi(A)ro||2 . 4
qi ' Pi |

to be satisfied, so that this method is equivalent to GCR.

If these mothods are restarted every k+l steps, then the resulting
mothods are equivslent to GCR(k). Both methods can also be modified to

produce methods analogous to Orthomin(k): only the k previous vectors

{Ps};-i-k+1 are used in (5.1a), and only the k vectors {pjljgi_k+1 are used

;i)};-i-k+1 computed to minimize Ilri+1||2. However,

both these truncated methods may fail to converge in some cases. (Ve have

in (5.2a), with {a

encountered situvations in which such failure occurs for the truncated
version of (5.1); see [2] for a discussion of the trumcated version of
(5.2).) For this reason, we favor the formulation of @CR given in

Section 2.

In discussing the methods of this paper, we have emphasized their
variational property, i.e., that z; is such that ||ri||2 is minimized over
some subspace. Saad [14, 15] has developed a class of CG-1ike methods for
nonsymmetric problems by restricting his attention to the properties of
projection and orthogonality. Let ('j};-o and ('11;-0 be two sets of

linearly independent vectors, and let ‘1 i= (vo.....v1> and
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L1 1= <'0"""i>' Saad defines an oblique projection method as one that
computes an approximate solution 41 % %o + Ki whose residual Ti4l is
orthogonal to Ll' For example, GCR is such a method with Ki = <po.....p1>

and Li = (Apo,....Api).

Saad presents several oblique projection methods in [14, 15]. Ome of

these is in some sense an alternative formulation of GCR. Let

r
0 i
o TT;;TT;' and let {vt]t=1 be defined by
t
(5.3) ht+1,tvt+1 = Avt - jib hjtvj »
t
where {hjt]j-o are chosen so that
(vt+1,Avj) =0 ,jigt ,

and h, ., . is chosen so that ||vt+1||2 = 1. Let ;(1) be the solution of
the system of equations

(1) T
(5.4) Ha Hzyll, (1,0,....0) ,

where Bi is the upper—Hessenberg matrix whose nonzero elements are the h

jt
defined above, and let

i
- < (1)
(5.5) X4 "% "t 2 8y, .
j=0
i
By construction, .41 % % + Ki, where Ki : <vo.....vi>=<vo.Avo.....A vo>.
It can be shown that Vil is proportional to Ti41’ %° that T4 is

orthogonal to Li g (Avo,....Avi). It cen elso be shown that X4

sinimizes ||ti+1||2 over x, + <v°,Av°.....Aivo>, so that x . is equal to

+

the (i+1)'st iterate gemerated by GCR.
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Note that the approximate solution Xin is computed only after [vt}:_o

have been oomputed, so that this method 1lends itself naturally to
restarting. Several other henristics can be used to cut expenses
(see [14, 15]1). In particular, the computation of the {vt} can be

truncated, so that at most k vectors are used to compute vt+1:

vl e

t+l,t e+ Y jemax(0, t~k+1) it’

This procednre can then be integrated into an algorithm with restarts every

i+1 steps, for i > k. After (v =p have been computed by (5.6), X4 18

i
t}t
computed as in (5.4) and (5.5), and the algorithm is restarted. The effect

of truncating the computation of the (vt) is to make H, & banded

upper—Hessenberg matrix with bandwidth k. We do not know when this method

converges.
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